Checkout

Cart () Loading...

    • Quantity:
    • Delivery:
    • Dates:
    • Location:

    $

Resource Library

Filter By

Topics

Show Filters
Result Filters:

112 Results Found

Results per page: 10 40 80

Cisco UCS: Spanning-Tree Need Not Apply!

Article | Feb. 15, 2012

Anyone who’s managed switches over the years knows that the Spanning-tree protocol (STP) is both the best and worst thing to ever happen to the data center at layer 2 of the OSI model. On the plus side, the Spanning-tree protocol is what first allowed us to create redundant paths within our switching infrastructure, making our data center much more resilient to outages than ever before. Anyone who’s experienced a “broadcast storm” knows the full value of Spanning-tree in the traditional switching environment. We’ve also seen many improvements in Spanning-tree over the years to make it work faster and more efficiently (i.e. Rapid Spanning-tree, Bridge Assurance, and many others).

What Kind of Network Am I On?

Article | March 01, 2012

Good question! There are lots of networks, so I’m sorry to say that it depends. Let me explain. The smallest computer-based networks are usually PANs or Personal Area Networks. They can connect a wireless keyboard, mouse, or other devices to a computer. You may find them wirelessly linking a printer to your computer. You may have noticed these all include wireless connections. A PAN most often uses wireless technologies like infrared and Bluetooth, so it is really a WPAN (Wireless Personal Area Network).

Five Secrets for Successfully Virtualizing a Data Center

White Paper | April 04, 2012

Here are some secrets, tips, and tricks for virtualizing your datacenter. We want to introduce some best practices for virtualization, while not being too biased towards one virtualization vendor or another. We'll use some common examples of products and tools that work with VMware's vSphere and Microsoft's Hyper-V, but with an eye toward virtualization in general, and not the specifics of any of the capable platforms that could be used). We will assume, however, that bare metal hypervisors, in other words virtualization platforms where the hyper visor is the OS, will be used as opposed to running a hypervisor on top of an existing general-purpose operating system (which is great in a lab, but terrible for data center projects).

When Learning Fails: Six Classic Mistakes and How to Avoid Them

Webinar – Recorded | May 12, 2012

Everyone has been involved in a learning program or project that has not delivered its intended impact. Across organizations, remarkably similar but preventable missteps are made in needs identification, learning strategies, program development and implementation.  Instructor Tom Gram, Senior Director of Professional Services at Global Knowledge, will present six classic mistakes learning professionals make that reduce chances for success along with evidence-based practices to help prevent them. 

What is Twisted Pair and Does It Work?

Article | June 12, 2012

“Twisted Pair” is another way to identify a network cabling solution that’s also called Unshielded Twisted Pair (UTP) and was invented by Alexander Graham Bell in 1881. Indoor business telephone applications use them in 25-pair bundles. In homes, they were down to four wires, but in networking we use them in 8-wire cables. By twisting the pairs at different rates (twists per foot), cable manufacturers can reduce the electromagnetic pulses coming from the cable while improving the cable’s ability to reject common electronic noise from the environment.

What is the Difference Between Bridges, Hubs, and Switches?

Article | Aug. 14, 2012

The most obvious difference is that hubs operate at Layer 1 of the OSI model while bridges and switches work with MAC addresses at Layer 2 of the OSI model. Hubs are really just multi-port repeaters. They ignore the content of an Ethernet frame and simply resend every frame they receive out every interface on the hub. The challenge is that the Ethernet frames will show up at every device attached to a hub instead of just the intended destination (a security gap), and inbound frames often collide with outbound frames (a performance issue).

Data Center Basics: the Differences Between IOS and NX-OS

Article | Sep. 04, 2012

As we discussed previously, Cisco created the Nexus Operating System (NX-OS) to power its next-generation data-center switching platform. While this new OS shares many similarities to the original IOS, there are some definite differences that you need to be aware of as you begin using it.

Which ITIL Processes Relate to a Data Center Operations Group?

Article | Sep. 19, 2012

I recently responded to a message on LinkedIn from a regular reader of this blog. He asked several questions which I will answer over the course of several posts. As part of his first question, he described a strategy report that his group is producing. The audience for this strategy report considers ITIL important to the future of their business, and so he must describe which ITIL processes his data center operations group works most closely with.

What Happens If I Have More Than One Switch With Redundant Links?

Article | Oct. 11, 2012

That depends on their configurations. For example: While it makes very good sense to include redundant physical links in a network, connecting switches in loops, without taking the appropriate measures, will cause havoc on a network. Without the correct measures, a switch floods broadcast frames out all of its ports, causing serious problems for the network devices. The main problem is a broadcast storm where broadcast frames are flooded through every switch until all available bandwidth is used and all network devices have more inbound frames than they can process.

What Happens if I Have More Than One Switch With Redundant Links? Part 2

Article | Oct. 18, 2012

Now that the network is installed, each switch has a bridge ID number, and the root switch has been elected, the next step is for each switch to perform a calculation to determine the best link to the root switch. Each switch will do this by comparing the path cost for each link based on the speed. For paths that go through one or more other switches, the link costs are added. The switch compares this aggregate value to the other link costs to determine the best path to the root switch.