Adding New Knowledge to LLMs
This course provides a comprehensive, hands-on guide to the essential techniques for augmenting and customizing LLMs.
This course takes you on a complete journey from raw data to a fine-tuned, optimized model. You will begin by learning how to curate high-quality datasets and generate synthetic data with NVIDIA NeMo Curator. Next, you will dive deep into the crucial process of model evaluation, using benchmarks, LLM-as-a-judge, and the NeMo Evaluator to rigorously assess model performance. With a solid foundation in evaluation, you will then explore a suite of powerful customization techniques, including Continued Pretraining to inject new knowledge, Supervised Fine-Tuning to teach new skills, and Direct Preference Optimization (DPO) to align model behavior with human preferences.
Worldwide Locations
Download course details