IBM InfoSphere QualityStage Essentials v11.7
- Código del Curso KM214G
- Duración 4 días
Otros Métodos de Impartición
Método de Impartición
Este curso está disponible en los siguientes formatos:
-
Clase de calendario
Aprendizaje tradicional en el aula
-
Aprendizaje Virtual
Aprendizaje virtual
Solicitar este curso en un formato de entrega diferente.
Temario
Parte superiorThis course teaches how to build QualityStage parallel jobs that investigate, standardize, match, and consolidate data records. This course covers common data quality issues, QualityStage architecture, QualityStage clients and their functions, importing metadata, running jobs and reviewing results, building Investigate jobs, the Standardize stage and rule sets, identifying matching records and applying multiple Match passes, building a Survive job, and using a Two-Source match.
Students will gain experience by building an application that combines customer data from three source systems into a single master customer record.
Curso Remoto (Abierto)
Nuestra solución de formación remota o virtual, combina tecnologías de alta calidad y la experiencia de nuestros formadores, contenidos, ejercicios e interacción entre compañeros que estén atendiendo la formación, para garantizar una sesión formativa superior, independiente de la ubicación de los alumnos.
Calendario
Parte superiorDirigido a
Parte superior- Data analysts responsible for data quality using QualityStage
- Data quality architects
- Data cleansing developers
Objetivos del Curso
Parte superiorAfter completing this course, learners should be able to:
- List common data quality contaminants
- Describe QualityStage architecture, clients, and their functions
- Build and run DataStage and QualityStage jobs and review results
- Use Character Discrete, Concatenate, and Word Investigations to analyze data fields
- Build jobs using the Standardize stage
- Build a QualityStage job to identify matching records
- Interpret, improve, and consolidate match results
Contenido
Parte superiorPre-requisitos
Parte superiorParticipants should have the following skills:
- Familiarity with the Windows Operating System
- Familiarity with a text editor
- Helpful, but not required: Some understanding of elementary statistics principles such as weighted averages and probabilities.