IBM watsonx.ai: Rapid Machine Learning Model Development and Deployment with AutoAI
- Código del Curso W7L555G
- Duración 1 Día
Otros Métodos de Impartición
Método de Impartición
Este curso está disponible en los siguientes formatos:
-
Clase de calendario
Aprendizaje tradicional en el aula
-
Aprendizaje Virtual
Aprendizaje virtual
Solicitar este curso en un formato de entrega diferente.
Temario
Parte superiorIBM watsonx.ai: Rapid Machine Learning Model Development and Deployment with AutoAI aims to familiarize data science and analytics professionals with the fundamentals of the IBM watsonx.ai AutoAI tool. This course walks users through creating IBM Cloud projects, building, and evaluating AutoAI experiments for various supervised machine learning and time series use cases, and finally, learners leverage Chat in the Prompt Lab for further analysis of the use case.
The course guides participants through AutoAI features, from model development to deployment, using a no-code approach for:
- Classification models
- Text classification models
- Regression models
- Time series models
- Hyperparameter tuning
- Model explainability
- Data imputation
- Model evaluation
- Model testing
- Deployment
Curso Remoto (Abierto)
Nuestra solución de formación remota o virtual, combina tecnologías de alta calidad y la experiencia de nuestros formadores, contenidos, ejercicios e interacción entre compañeros que estén atendiendo la formación, para garantizar una sesión formativa superior, independiente de la ubicación de los alumnos.
Calendario
Parte superiorDirigido a
Parte superiorThis course is intended for Data Scientists, AI Specialists, watsonx Specialists, Solution Architects, or anyone interested in AutoAI.
Objetivos del Curso
Parte superiorBy the end of the course, learners will be able to:
- Identify potential machine learning use cases applicable to AutoAI.
- Differentiate problem types relevant to AutoAI experiments (Classification, Regression, Time Series).
- Configure settings for various AutoAI experiments.
- Evaluate pipelines and models produced by AutoAI experiments.
- Recognize deployment strategies for AutoAI models.
Contenido
Parte superiorThe following topics will be covered throughout the course:
- Introduction to AutoAI
- Classification model development and deployment
- Regression model development
- Text classification model development
- Time series model development
- Model explainability