LLM Basics
- Código del Curso GK840035
- Duración 2 días
Otros Métodos de Impartición
Método de Impartición
Este curso está disponible en los siguientes formatos:
-
Cerrado
Cerrado
-
Clase de calendario
Aprendizaje tradicional en el aula
-
Aprendizaje Virtual
Aprendizaje virtual
Solicitar este curso en un formato de entrega diferente.
Temario
Parte superiorCalendario
Parte superior-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 16-17 febrero, 2026 | 9:30 AM to 5:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Inglés
-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 19-20 febrero, 2026 | 10:30 AM to 6:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Inglés
-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 19-20 marzo, 2026 | 9:30 AM to 5:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Inglés
-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 19-20 marzo, 2026 | 10:30 AM to 6:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Inglés
-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 09-10 abril, 2026 | 9:30 AM to 5:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Español
-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 14-15 abril, 2026 | 9:30 AM to 5:00 PM
- Sede: Aula Virtual (W. Europe )
- Idioma: Inglés
Dirigido a
Parte superior- AI/ML Enthusiasts interested in learning about NLP (Natural Language Processing) and Large Language Models (LLMs).
- Data Scientists/Engineers interesting in using LLMs for inference and finetuning
- Software Developers wanting basic practical experience with NLP frameworks and LLMs
- Students and Professionals curious about the basics of transformers and how they power AI models
Objetivos del Curso
Parte superiorWorking with an engaging, hands-on learning environment, and guided by an expert instructor, students will learn the basics of Large Language Models (LLMs) and how to use them for inference to build AI powered applications.
- Understand the basics of Natural Language Processing
- Implement text preprocessing and tokenization techniques using NLTK
- Explain word embeddings and the evolution of language models
- Use RNNs and LSTMs for handling sequential data
- Describe what transformers are and use key models like BERT and GPT
- Understand the risks and limitations of LLMs
- Use pre-trained models from Hugging Face to implement NLP tasks
- Understand the basics of Retrieval-Augmented Generation (RAG) systems
Contenido
Parte superior1) Introduction to NLP
- What is NLP?
- NLP Basics: Text Preprocessing and Tokenization
- NLP Basics: Word Embeddings
- Introducing Traditional NLP Libraries
- A brief history of modeling language
- Introducing PyTorch and HuggingFace for Text Preprocessing
- Neural Networks and Text Data
- Building Language Models using RNNs and LSTMs
2) Transformers and LLMs
- Introduction to Transformers
- Using Hugging Face’s Transformers for inference
- LLMs and Generative AI
- Current LLM Options
- Fine tuning GPT
- Aligning LLMs with Human Values
- Retrieval-Augmented Generation (RAG) Systems
Pre-requisitos
Parte superior- Proficiency in Python programming
- Familiarity with data analysis using Pandas