Build machine learning solutions using Azure Databricks (DP-3014)
- Código del Curso M-DP3014
- Duración 1 Día
Otros Métodos de Impartición
Método de Impartición
Este curso está disponible en los siguientes formatos:
-
Cerrado
Cerrado
-
Clase de calendario
Aprendizaje tradicional en el aula
-
Aprendizaje Virtual
Aprendizaje virtual
Solicitar este curso en un formato de entrega diferente.
Temario
Parte superiorCurso Cerrado (In-Company)
Debido a que nuestra formación es modular, nuestros responsables de formación e instructores pueden trabajar con usted y su equipo para detectar las necesidades formativas y adaptar un temario de forma rápida y rentable. Durante una formación cerrada, usted recibirá una formación de expertos en un curriculum adaptado a sus necesidades.
Calendario
Parte superiorDirigido a
Parte superiorData scientists and machine learning engineers.
Objetivos del Curso
Parte superiorStudents will learn to,
- Explore Azure Databricks
- Use Apache Spark in Azure Databricks
- Train a machine learning model in Azure Databricks
- Use MLflow in Azure Databricks
- Tune hyperparameters in Azure Databricks
- Use AutoML in Azure Databricks
- Train deep learning models in Azure Databricks
- Manage machine learning in production with Azure Databricks
Contenido
Parte superiorModule 1 : Explore Azure Databricks
- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Use Data Governance tools Unity Catalog and Microsoft Purview
- Describe key concepts of an Azure Databricks solution.
Module 2 : Use Apache Spark in Azure Databricks
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in files.
- Use Spark to visualize data.
Module 3 : Train a machine learning model in Azure Databricks
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
Module 4 : Use MLflow in Azure Databricks
- Use MLflow to log parameters, metrics, and other details from experiment runs.
- Use MLflow to manage and deploy trained models.
Module 5 : Tune hyperparameters in Azure Databricks
- Use the Hyperopt library to optimize hyperparameters.
- Distribute hyperparameter tuning across multiple worker nodes.
Module 6 : Use AutoML in Azure Databricks
- Use the AutoML user interface in Azure Databricks
- Use the AutoML API in Azure Databricks
Module 7 : Train deep learning models in Azure Databricks
- Train a deep learning model in Azure Databricks
- Distribute deep learning training by using the Horovod library
Module 8 : Manage machine learning in production with Azure Databricks
- Automate feature engineering and data pipelines
- Model development and training
- Model deployment strategies
- Model versioning and lifecycle management
Pre-requisitos
Parte superior- This learning path assumes that you have experience of using Python to explore data and train machine learning models with common open source frameworks, like Scikit-Learn, PyTorch, and TensorFlow. Consider completing the Create machine learning models learning path before starting this one.