The Machine Learning Pipeline on AWS
- Course Code GK7376
- Duration 4 days
Course Delivery
Jump to:
Course Delivery
This course is available in the following formats:
-
Company Event
Event at company
-
Public Classroom
Traditional Classroom Learning
-
Virtual Learning
Learning that is virtual
Request this course in a different delivery format.
Course Overview
TopVirtual Learning
This interactive training can be taken from any location, your office or home and is delivered by a trainer. This training does not have any delegates in the class with the instructor, since all delegates are virtually connected. Virtual delegates do not travel to this course, Global Knowledge will send you all the information needed before the start of the course and you can test the logins.
Course Schedule
Top-
- Delivery Format: Virtual Learning
- Date: 13-16 January, 2025
- Location: Virtual
Target Audience
TopThis course is intended for:
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
Course Objectives
TopIn this course, you will learn to:
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
Course Content
TopDay One
- Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Lab 1: Introduction to Amazon SageMaker
Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Problem Formulation Exercise and Review
- Project work for Problem Formulation
Day Two
Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Lab 2: Data Preprocessing (including project work)
Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
Module 6: Model Training
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Lab 3: Model Training and Evaluation (including project work)
- Project Share-Out 1
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
Day Three
Recap and Checkpoint #2
Module 6: Model Training
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Lab 3: Model Training and Evaluation (including project work)
- Project Share-Out 1
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
Day Four
Lab 4: Feature Engineering (including project work)
Module 8: Module Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
Module 9: Course Wrap-Up
- Project Share-Out 2
- Post-Assessment
- Wrap-up
Course Prerequisites
TopWe recommend that attendees of this course have:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
- GK7376
- The Machine Learning Pipeline on AWS
- Cloud Computing
- GK7376 | The Machine Learning Pipeline on AWS | Training Course | Amazon Web Services.
- Amazon Web Services