MLOps Engineering on AWS
- Code training GK7395
- Duur 3 dagen
Andere trainingsmethoden
Ga naar:
Methode
Deze training is in de volgende formats beschikbaar:
-
Klassikale training
Klassikaal leren
-
Op locatie klant
Op locatie klant
-
Virtueel leren
Virtueel leren
Vraag deze training aan in een andere lesvorm.
Trainingsbeschrijving
Naar bovenData
Naar boven-
- Methode: Virtueel leren
- Datum: 02-04 februari, 2026 | 10:00 to 18:30
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 13-15 april, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Klassikale training
- Datum: 05-07 mei, 2026 | 09:00 to 17:00
- Locatie: Nieuwegein (Iepenhoeve 5) (W. Europe )
- Taal: Nederlands
-
- Methode: Virtueel leren
- Datum: 05-07 mei, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Nederlands
-
- Methode: Virtueel leren
- Datum: 17-19 augustus, 2026 | 10:00 to 18:30
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 02-04 september, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
Doelgroep
Naar bovenThis course is intended for:
- MLOps engineers who want to productionize and monitor ML models in the AWS cloud
- DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production
Trainingsdoelstellingen
Naar bovenIn this course, you will learn to:
- Explain the benefits of MLOps
- Compare and contrast DevOps and MLOps
- Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
- Set up experimentation environments for MLOps with Amazon SageMaker
- Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
- Describe three options for creating a full CI/CD pipeline in an ML context
- Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
- Demonstrate how to monitor ML based solutions
- Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data
Inhoud training
Naar bovenDay 1
Module 1: Introduction to MLOps
- Processes
- People
- Technology
- Security and governance
- MLOps maturity model
Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio
- Bringing MLOps to experimentation
- Setting up the ML experimentation environment
- Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
- Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
- Workbook: Initial MLOps
Module 3: Repeatable MLOps: Repositories
- Managing data for MLOps
- Version control of ML models
- Code repositories in ML
Module 4: Repeatable MLOps: Orchestration
- ML pipelines
- Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines
Day 2
Module 4: Repeatable MLOps: Orchestration (continued)
- End-to-end orchestration with AWS Step Functions
- Hands-On Lab: Automating a Workflow with Step Functions
- End-to-end orchestration with SageMaker Projects
- Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
- Using third-party tools for repeatability
- Demonstration: Exploring Human-in-the-Loop During Inference
- Governance and security
- Demonstration: Exploring Security Best Practices for SageMaker
- Workbook: Repeatable MLOps
Module 5: Reliable MLOps: Scaling and Testing
- Scaling and multi-account strategies
- Testing and traffic-shifting
- Demonstration: Using SageMaker Inference Recommender
- Hands-On Lab: Testing Model Variants
Day 3
Module 5: Reliable MLOps: Scaling and Testing (continued)
- Hands-On Lab: Shifting Traffic
- Workbook: Multi-account strategies
Module 6: Reliable MLOps: Monitoring
- The importance of monitoring in ML
- Hands-On Lab: Monitoring a Model for Data Drift
- Operations considerations for model monitoring
- Remediating problems identified by monitoring ML solutions
- Workbook: Reliable MLOps
- Hands-On Lab: Building and Troubleshooting an ML Pipeline
Voorkennis
Naar bovenWe recommend that attendees of this course have:
- AWS Technical Essentials (classroom or digital)
- DevOps Engineering on AWS, or equivalent experience
- Practical Data Science with Amazon SageMaker, or equivalent experience
Aanvullende informatie
Naar bovenActivities
This course includes presentations, hands-on labs, demonstrations, knowledge checks, and workbook activities.