Amazon SageMaker Studio for Data Scientists
- Course Code GK110001
- Duration 3 days
Course Delivery
Jump to:
Course Delivery
This course is available in the following formats:
-
Company Event
Event at company
-
Public Classroom
Traditional Classroom Learning
-
Virtual Learning
Learning that is virtual
Request this course in a different delivery format.
Course Overview
TopAmazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
Course level: Advanced
Duration: 3 days
Activities
This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.
Course Schedule
Top-
- Delivery Format: Public Classroom
- Date: 04-06 February, 2026 | 9:00 AM to 5:00 PM
- Location: 2-Brussel Center (Koloniënstraat 11) (W. Europe )
- Language: English
-
- Delivery Format: Virtual Learning
- Date: 04-06 February, 2026 | 9:00 AM to 5:00 PM
- Location: Virtual (W. Europe )
- Language: English
-
- Delivery Format: Virtual Learning
- Date: 09-11 March, 2026 | 9:00 AM to 5:00 PM
- Location: Virtual (W. Europe )
- Language: French
-
- Delivery Format: Virtual Learning
- Date: 13-15 April, 2026 | 9:00 AM to 5:00 PM
- Location: Virtual (W. Europe )
- Language: Dutch
-
- Delivery Format: Virtual Learning
- Date: 06-08 May, 2026 | 10:00 AM to 6:00 PM
- Location: Virtual (W. Europe )
- Language: English
-
- Delivery Format: Virtual Learning
- Date: 15-17 June, 2026 | 9:00 AM to 5:00 PM
- Location: Virtual (W. Europe )
- Language: French
Target Audience
TopExperienced data scientists who are proficient in ML and deep learning fundamentals
Course Objectives
TopIn this course, you will learn to:
- Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio
Course Content
TopDay 1
Module 1: Amazon SageMaker Studio Setup
- JupyterLab Extensions in SageMaker Studio
- Demonstration: SageMaker user interface demo
Module 2: Data Processing
- Using SageMaker Data Wrangler for data processing
- Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
- Using Amazon EMR
- Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
- Using AWS Glue interactive sessions
- Using SageMaker Processing with custom scripts
- Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
- SageMaker Feature Store
- Hands-On Lab: Feature engineering using SageMaker Feature Store
Module 3: Model Development
- SageMaker training jobs
- Built-in algorithms
- Bring your own script
- Bring your own container
- SageMaker Experiments
- Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning
- Models
Day 2
Module 3: Model Development (continued)
- SageMaker Debugger
- Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
- Automatic model tuning
- SageMaker Autopilot: Automated ML
- Demonstration: SageMaker Autopilot
- Bias detection
- Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
- SageMaker Jumpstart
Module 4: Deployment and Inference
- SageMaker Model Registry
- SageMaker Pipelines
- Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
- SageMaker model inference options
- Scaling
- Testing strategies, performance, and optimization
- Hands-On Lab: Inferencing with SageMaker Studio
Module 5: Monitoring
- Amazon SageMaker Model Monitor
- Discussion: Case study
- Demonstration: Model Monitoring
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
- Accrued cost and shutting down
- Updates Capstone
- Environment setup
- Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
- Challenge 2: Create feature groups in SageMaker Feature Store
- Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
- (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
- Challenge 5: Evaluate the model for bias using SageMaker Clarify
- Challenge 6: Perform batch predictions using model endpoint
- (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
Course Prerequisites
TopWe recommend that all attendees of this course have:
- Experience using ML frameworks
- Python programming experience
- At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
- AWS Technical Essentials