LLM Basics
- Kursuskode GK840035
- Varighed 2 dage
Leveringsmetoder
Leveringsmetoder
Kurset er tilgængeligt i følgende formater:
-
Firma kursus
Et lukket firma kursus
-
Åbent kursus
Traditionel klasserumsundervisning
-
Åbent kursus (Virtuelt)
Live klasserumsundervisning du tilgår virtuelt
Anmod om dette kursus Med en anden leveringsløsning
Beskrivelse
ToppenKursusdato
ToppenMålgruppe
Toppen- AI/ML Enthusiasts interested in learning about NLP (Natural Language Processing) and Large Language Models (LLMs).
- Data Scientists/Engineers interesting in using LLMs for inference and finetuning
- Software Developers wanting basic practical experience with NLP frameworks and LLMs
- Students and Professionals curious about the basics of transformers and how they power AI models
Kursets formål
ToppenWorking with an engaging, hands-on learning environment, and guided by an expert instructor, students will learn the basics of Large Language Models (LLMs) and how to use them for inference to build AI powered applications.
- Understand the basics of Natural Language Processing
- Implement text preprocessing and tokenization techniques using NLTK
- Explain word embeddings and the evolution of language models
- Use RNNs and LSTMs for handling sequential data
- Describe what transformers are and use key models like BERT and GPT
- Understand the risks and limitations of LLMs
- Use pre-trained models from Hugging Face to implement NLP tasks
- Understand the basics of Retrieval-Augmented Generation (RAG) systems
Kursusindhold
Toppen1) Introduction to NLP
- What is NLP?
- NLP Basics: Text Preprocessing and Tokenization
- NLP Basics: Word Embeddings
- Introducing Traditional NLP Libraries
- A brief history of modeling language
- Introducing PyTorch and HuggingFace for Text Preprocessing
- Neural Networks and Text Data
- Building Language Models using RNNs and LSTMs
2) Transformers and LLMs
- Introduction to Transformers
- Using Hugging Face’s Transformers for inference
- LLMs and Generative AI
- Current LLM Options
- Fine tuning GPT
- Aligning LLMs with Human Values
- Retrieval-Augmented Generation (RAG) Systems
Forudsætninger
Toppen- Proficiency in Python programming
- Familiarity with data analysis using Pandas