Build machine learning solutions using Azure Databricks (DP-3014)
- Code training M-DP3014
- Duur 1 dag
Andere trainingsmethoden
Methode
Deze training is in de volgende formats beschikbaar:
-
Klassikale training
Klassikaal leren
-
Op locatie klant
Op locatie klant
-
Virtueel leren
Virtueel leren
Vraag deze training aan in een andere lesvorm.
Trainingsbeschrijving
Naar boven
Built as a joint effort by Microsoft and the team that started Apache Spark, Azure Databricks provides data science, engineering, and analytical teams with a single platform for big data processing and machine learning. In this course, you’ll learn how to use Azure Databricks to train and deploy machine learning models.
Data
Naar boven-
- Methode: Virtueel leren
- Datum: 04 maart, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 15 april, 2026 | 10:30 to 18:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Klassikale training
- Datum: 20 mei, 2026 | 09:00 to 17:00
- Locatie: Eindhoven (Evoluon Noord Brabantlaan 1) (W. Europe )
- Taal: Nederlands
-
- Methode: Virtueel leren
- Datum: 20 mei, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Nederlands
-
- Methode: Virtueel leren
- Datum: 02 juli, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 12 augustus, 2026 | 10:30 to 18:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
Doelgroep
Naar bovenData scientists and machine learning engineers.
Trainingsdoelstellingen
Naar bovenStudents will learn to,
- Explore Azure Databricks
- Use Apache Spark in Azure Databricks
- Train a machine learning model in Azure Databricks
- Use MLflow in Azure Databricks
- Tune hyperparameters in Azure Databricks
- Use AutoML in Azure Databricks
- Train deep learning models in Azure Databricks
- Manage machine learning in production with Azure Databricks
Inhoud training
Naar bovenModule 1 : Explore Azure Databricks
- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Use Data Governance tools Unity Catalog and Microsoft Purview
- Describe key concepts of an Azure Databricks solution.
Module 2 : Use Apache Spark in Azure Databricks
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in files.
- Use Spark to visualize data.
Module 3 : Train a machine learning model in Azure Databricks
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
Module 4 : Use MLflow in Azure Databricks
- Use MLflow to log parameters, metrics, and other details from experiment runs.
- Use MLflow to manage and deploy trained models.
Module 5 : Tune hyperparameters in Azure Databricks
- Use the Hyperopt library to optimize hyperparameters.
- Distribute hyperparameter tuning across multiple worker nodes.
Module 6 : Use AutoML in Azure Databricks
- Use the AutoML user interface in Azure Databricks
- Use the AutoML API in Azure Databricks
Module 7 : Train deep learning models in Azure Databricks
- Train a deep learning model in Azure Databricks
- Distribute deep learning training by using the Horovod library
Module 8 : Manage machine learning in production with Azure Databricks
- Automate feature engineering and data pipelines
- Model development and training
- Model deployment strategies
- Model versioning and lifecycle management
Voorkennis
Naar boven- This learning path assumes that you have experience of using Python to explore data and train machine learning models with common open source frameworks, like Scikit-Learn, PyTorch, and TensorFlow. Consider completing the Create machine learning models learning path before starting this one.