Build machine learning solutions using Azure Databricks (DP-3014)
- Code training M-DP3014
- Duur 1 dag
Andere trainingsmethoden
Methode
Deze training is in de volgende formats beschikbaar:
-
Klassikale training
Klassikaal leren
-
Op locatie klant
Op locatie klant
-
Virtueel leren
Virtueel leren
Vraag deze training aan in een andere lesvorm.
Trainingsbeschrijving
Naar bovenVirtueel en Klassikaal™
Virtueel en Klassikaal™ is een eenvoudig leerconcept en biedt een flexibele oplossing voor het volgen van een klassikale training. Met Virtueel en Klassikaal™ kunt u zelf beslissen of u een klassikale training virtueel (vanuit huis of kantoor )of fysiek op locatie wilt volgen. De keuze is aan u! Cursisten die virtueel deelnemen aan de training ontvangen voor aanvang van de training alle benodigde informatie om de training te kunnen volgen.
Data
Naar boven-
- Methode: Virtueel leren
- Datum: 04 maart, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 15 april, 2026 | 10:30 to 18:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 20 mei, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Nederlands
-
- Methode: Virtueel leren
- Datum: 02 juli, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 12 augustus, 2026 | 10:30 to 18:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
-
- Methode: Virtueel leren
- Datum: 23 september, 2026 | 09:00 to 17:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Nederlands
Doelgroep
Naar bovenData scientists and machine learning engineers.
Trainingsdoelstellingen
Naar bovenStudents will learn to,
- Explore Azure Databricks
- Use Apache Spark in Azure Databricks
- Train a machine learning model in Azure Databricks
- Use MLflow in Azure Databricks
- Tune hyperparameters in Azure Databricks
- Use AutoML in Azure Databricks
- Train deep learning models in Azure Databricks
- Manage machine learning in production with Azure Databricks
Inhoud training
Naar bovenModule 1 : Explore Azure Databricks
- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Use Data Governance tools Unity Catalog and Microsoft Purview
- Describe key concepts of an Azure Databricks solution.
Module 2 : Use Apache Spark in Azure Databricks
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in files.
- Use Spark to visualize data.
Module 3 : Train a machine learning model in Azure Databricks
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
Module 4 : Use MLflow in Azure Databricks
- Use MLflow to log parameters, metrics, and other details from experiment runs.
- Use MLflow to manage and deploy trained models.
Module 5 : Tune hyperparameters in Azure Databricks
- Use the Hyperopt library to optimize hyperparameters.
- Distribute hyperparameter tuning across multiple worker nodes.
Module 6 : Use AutoML in Azure Databricks
- Use the AutoML user interface in Azure Databricks
- Use the AutoML API in Azure Databricks
Module 7 : Train deep learning models in Azure Databricks
- Train a deep learning model in Azure Databricks
- Distribute deep learning training by using the Horovod library
Module 8 : Manage machine learning in production with Azure Databricks
- Automate feature engineering and data pipelines
- Model development and training
- Model deployment strategies
- Model versioning and lifecycle management
Voorkennis
Naar boven- This learning path assumes that you have experience of using Python to explore data and train machine learning models with common open source frameworks, like Scikit-Learn, PyTorch, and TensorFlow. Consider completing the Create machine learning models learning path before starting this one.