Skip to main Content

Amazon SageMaker Studio for Data Scientists

  • Code training GK110001
  • Duur 3 dagen

Andere trainingsmethoden

Virtueel leren Prijs

eur1,995.00

(excl. BTW)

Vraag een groepstraining aan Schrijf je in

Methode

Deze training is in de volgende formats beschikbaar:

  • Klassikale training

    Klassikaal leren

  • Op locatie klant

    Op locatie klant

  • Virtueel leren

    Virtueel leren

Vraag deze training aan in een andere lesvorm.

Trainingsbeschrijving

Naar boven

Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.

Course level: Advanced

Duration: 3 days

 

Activities

This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.

Virtueel en Klassikaal™

Virtueel en Klassikaal™ is een eenvoudig leerconcept en biedt een flexibele oplossing voor het volgen van een klassikale training. Met Virtueel en Klassikaal™ kunt u zelf beslissen of u een klassikale training virtueel (vanuit huis of kantoor )of fysiek op locatie wilt volgen. De keuze is aan u! Cursisten die virtueel deelnemen aan de training ontvangen voor aanvang van de training alle benodigde informatie om de training te kunnen volgen.

    • Methode: Virtueel leren
    • Datum: 13-15 april, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Nederlands

    eur1,995.00

    • Methode: Virtueel leren
    • Datum: 07-09 oktober, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Nederlands

    eur1,995.00

Doelgroep

Naar boven

Experienced data scientists who are proficient in ML and deep learning fundamentals

Trainingsdoelstellingen

Naar boven

In this course, you will learn to:

  • Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio

Inhoud training

Naar boven

Day 1

Module 1: Amazon SageMaker Studio Setup

  • JupyterLab Extensions in SageMaker Studio
  • Demonstration: SageMaker user interface demo

Module 2: Data Processing

  • Using SageMaker Data Wrangler for data processing
  • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
  • Using Amazon EMR
  • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
  • Using AWS Glue interactive sessions
  • Using SageMaker Processing with custom scripts
  • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
  • SageMaker Feature Store
  • Hands-On Lab: Feature engineering using SageMaker Feature Store

Module 3: Model Development

  • SageMaker training jobs
  • Built-in algorithms
  • Bring your own script
  • Bring your own container
  • SageMaker Experiments
  • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning
  • Models

Day 2

Module 3: Model Development (continued)

  • SageMaker Debugger
  • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
  • Automatic model tuning
  • SageMaker Autopilot: Automated ML
  • Demonstration: SageMaker Autopilot
  • Bias detection
  • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
  • SageMaker Jumpstart

Module 4: Deployment and Inference

  • SageMaker Model Registry
  • SageMaker Pipelines
  • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
  • SageMaker model inference options
  • Scaling
  • Testing strategies, performance, and optimization
  • Hands-On Lab: Inferencing with SageMaker Studio

Module 5: Monitoring

  • Amazon SageMaker Model Monitor
  • Discussion: Case study
  • Demonstration: Model Monitoring

Day 3

Module 6: Managing SageMaker Studio Resources and Updates

  • Accrued cost and shutting down
  • Updates Capstone
  • Environment setup
  • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
  • Challenge 2: Create feature groups in SageMaker Feature Store
  • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
  • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
  • Challenge 5: Evaluate the model for bias using SageMaker Clarify
  • Challenge 6: Perform batch predictions using model endpoint
  • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline

Voorkennis

Naar boven

We recommend that all attendees of this course have:

  • Experience using ML frameworks
  • Python programming experience
  • At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
  • AWS Technical Essentials