Skip to main Content

Practical Data Science with Amazon SageMaker

  • Code training GK0630
  • Duur 1 dag
  • Versie 1.0

Klassikale training Prijs

eur795.00

(excl. BTW)

Vraag een groepstraining aan Schrijf je in

Methode

Deze training is in de volgende formats beschikbaar:

  • Class Connect

    Verbind naar een klas in HD

  • Klassikale training

    Klassikaal leren

  • Op locatie klant

    Op locatie klant

  • Virtueel leren

    Virtueel leren

Vraag deze training aan in een andere lesvorm.

Trainingsbeschrijving

Naar boven

Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

Course level: Intermediate

Duration: 1 day


Activities

This course includes presentations, hands-on labs, and demonstrations.

    • Methode: Virtueel leren
    • Datum: 07 januari, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 30 maart, 2026 | 09:30 to 17:30
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 09 april, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 03 juni, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Engels

    eur795.00

    • Methode: Klassikale training
    • Datum: 03 juli, 2026 | 09:00 to 17:00
    • Locatie: Nieuwegein (Iepenhoeve 5) (W. Europe )
    • Taal: Nederlands

    eur795.00

    • Methode: Virtueel leren
    • Datum: 03 juli, 2026 | 09:00 to 17:00
    • Locatie: Virtueel-en-klassikaal (W. Europe )
    • Taal: Nederlands

    eur795.00

Doelgroep

Naar boven

- Development Operations (DevOps) engineers

- Application developers

Trainingsdoelstellingen

Naar boven

In this course, you will learn to:

  • Discuss the benefits of different types of machine learning for solving business problems
  • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
  • Explain how data scientists use AWS tools and ML to solve a common business problem
  • Summarize the steps a data scientist takes to prepare data
  • Summarize the steps a data scientist takes to train ML models
  • Summarize the steps a data scientist takes to evaluate and tune ML models
  • Summarize the steps to deploy a model to an endpoint and generate predictions
  • Describe the challenges for operationalizing ML models
  • Match AWS tools with their ML function

Inhoud training

Naar boven

Module 1: Introduction to Machine Learning

  • Benefits of machine learning (ML)
  • Types of ML approaches
  • Framing the business problem
  • Prediction quality
  • Processes, roles, and responsibilities for ML projects

Module 2: Preparing a Dataset

  • Data analysis and preparation
  • Data preparation tools
  • Demonstration: Review Amazon SageMaker Studio and Notebooks
  • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

Module 3: Training a Model

  • Steps to train a model
  • Choose an algorithm
  • Train the model in Amazon SageMaker
  • Hands-On Lab: Training a Model with Amazon SageMaker
  • Amazon CodeWhisperer
  • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

Module 4: Evaluating and Tuning a Model

  • Model evaluation
  • Model tuning and hyperparameter optimization
  • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

Module 5: Deploying a Model

  • Model deployment
  • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

Module 6: Operational Challenges

  • Responsible ML
  • ML team and MLOps
  • Automation
  • Monitoring
  • Updating models (model testing and deployment)

Module 7: Other Model-Building Tools

  • Different tools for different skills and business needs
  • No-code ML with Amazon SageMaker Canvas
  • Demonstration: Overview of Amazon SageMaker Canvas
  • Amazon SageMaker Studio Lab
  • Demonstration: Overview of SageMaker Studio Lab
  • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

Voorkennis

Naar boven

We recommend that attendees of this course have:

  • AWS Technical Essentials
  • Entry-level knowledge of Python programming
  • Entry-level knowledge of statistics