Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267)
- Code training AI267
- Duur 3 dagen
Andere trainingsmethoden
Ga naar:
Methode
Deze training is in de volgende formats beschikbaar:
-
Klassikale training
Klassikaal leren
-
Op locatie klant
Op locatie klant
-
Virtueel leren
Virtueel leren
Vraag deze training aan in een andere lesvorm.
Trainingsbeschrijving
Naar bovenAn introduction to developing and deploying AI/ML applications on Red Hat OpenShift AI.
Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) provides students with the fundamental knowledge about using Red Hat OpenShift for developing and deploying AI/ML applications.
Organizations collect and store vast amounts of information from multiple sources. With Red Hat OpenShift AI, organizations have a platform ready to analyze data, visualize trends and patterns, and predict future business outcomes by using machine learning and artificial intelligence algorithms.
This course helps students build core skills for using Red Hat OpenShift AI to train, develop and deploy machine learning models through hands-on experience.
You will understand the foundations of the Red Hat OpenShift AI architecture. You will be able to install Red Hat OpenShift AI, manage resource allocations, update components and manage users and their permissions.
You will also be able to train, deploy and serve models, including how to use Red Hat OpenShift AI to apply best practices in machine learning and data science.
Finally you will be able to define and set up data science pipelines with Red Hat OpenShift AI.
This course is based on Red Hat OpenShift ® 4.16, and Red Hat OpenShift AI 2.13.
Note: Starting January 1, 2026, Red Hat introduces RHLS-Course — a flexible subscription model now included with this catalog offering. This replaces the previous direct virtual class enrollment from Global Knowledge.
When you purchase this item, you’ll receive an RHLS subscription at the course level, giving you the freedom to choose the schedule that works best and self-enroll in your selected class.
Your RHLS subscription includes:
• One live, instructor-led virtual session
• 12 months of self-paced learning access
• One certification exam with a free retake
Onsite Classroom-based sessions and closed course options remain unchanged.
Updated Jan2026
Virtueel en Klassikaal™
Virtueel en Klassikaal™ is een eenvoudig leerconcept en biedt een flexibele oplossing voor het volgen van een klassikale training. Met Virtueel en Klassikaal™ kunt u zelf beslissen of u een klassikale training virtueel (vanuit huis of kantoor )of fysiek op locatie wilt volgen. De keuze is aan u! Cursisten die virtueel deelnemen aan de training ontvangen voor aanvang van de training alle benodigde informatie om de training te kunnen volgen.
Data
Naar boven-
- Methode: Virtueel leren
- Datum: 16-18 maart, 2026 | 10:00 to 18:00
- Locatie: Virtueel-en-klassikaal (W. Europe )
- Taal: Engels
Doelgroep
Naar boven- Data scientists and AI practitioners who want to use Red Hat OpenShift AI to build and train ML models
- Developers who want to build and integrate AI/ML enabled applications
- MLOps engineers responsible for installing, configuring, deploying, and monitoring AI/ML applications on Red Hat OpenShift AI
Trainingsdoelstellingen
Naar bovenAfter this course participants should be able to:
- Understand the basis of Red Hat OpenShift AI
- Handle Data Science Projects
- Use Jupyter Notebooks
- Manage Red Hat OpenShift AI Installation
- Handle Users and Resources Management
- Custom Notebook Images
- Get an introduction to Machine Learning
- Use Training Models
- Enhance Model Training with RHOAI
- Get an introduction to Model Serving
- Use Model Serving in Red Hat OpenShift AI
- Get an introduction to Data Science Pipelines
- Work with Pipelines
- Control Pipelines and Experiments
Inhoud training
Naar bovenIntroduction to Red Hat OpenShift AI
Identify the main features of Red Hat OpenShift AI, and describe the architecture and components of Red Hat AI.
Data Science Projects
Organize code and configuration by using data science projects, workbenches, and data connections
Jupyter Notebooks
Use Jupyter notebooks to execute and test code interactively
Installing Red Hat OpenShift AI
Installing Red Hat OpenShift AI by using the web console and the CLI, and managing Red Hat OpenShift AI components
Managing Users and Resources
Managing Red Hat OpenShift AI users, and resource allocation for Workbenches
Custom Notebook Images
Creating custom notebook images, and importing a custom notebook through the Red Hat OpenShift AI dashboard
Introduction to Machine Learning
Describe basic machine learning concepts, different types of machine learning, and machine learning workflows
Training Models
Train models by using default and custom workbenches
Enhancing Model Training with RHOAI
Use RHOAI to apply best practices in machine learning and data science
Introduction to Model Serving
Describe the concepts and components required to export, share and serve trained machine learning modelsI
Model Serving in Red Hat OpenShift AI
Serve trained machine learning models with OpenShift AI
Custom Model Servers
Deploy and serve machine learning models by using custom model serving runtimes
Introduction to Data Science Pipelines
Create, run, manage, and troubleshoot data science pipelines
Elyra Pipelines
Creating a Data Science Pipeline with Elyra
KubeFlow Pipelines
Creating a Data Science Pipeline with KubeFlow SDK
Voorkennis
Naar boven- Experience with Git is required
- Experience in Python development is required, or completion of the Python Programming with Red Hat (AD141) course
- Experience in Red Hat OpenShift is required, or completion of the Red Hat OpenShift Developer II: Building and Deploying Cloud-native Applications (DO288) course
- Basic experience in the AI, data science, and machine learning fields is recommended
Take Red Hat free assessment to gauge whether this offering is the best fit for your skills Red Hat Skills Assessment
Examen
Naar boven-
Red Hat Certified Specialist in OpenShift AI Exam (EX267)
Vervolgtrainingen
Naar bovenNone
Aanvullende informatie
Naar boven- Official course book provided to participants